师资队伍

教师名录

梁夫友

工程力学系

办公电话:34205120
电子邮件:fuyouliang@sjtu.edu.cn
通讯地址:上海市东川路800号木兰船建大楼B423

williamhill威廉希尔官网工程力学系教授、博士生导师,AO-SJTU生物力学联合实验室负责人,WilliamHill中文官方网站生物力学与医疗器械创新工作室责任教授。曾兼任美国莱特州立大学博士生导师,日本理化学研究所、莫斯科国立第一医科大学客座研究科学家;目前担任《International Journal for Numerical Methods in Biomedical Engineering》副主编、《Frontiers in Bioengineering and Biotechnology》副主编、《Journal of Clinical Ultrasound》副主编以及《Medicine in Novel Technology and Devices》、《医用生物力学》、《力学季刊》、《Journal of Hydrodynamics》编委,中国力学学会生物力学专业委员会委员,中国生物材料学会材料生物力学分会委员,世界华人生物医学工程协会青年委员,上海市力学学会生物力学专委会委员;曾作为会议主席举办国际学术研讨会2次,多次担任国际/国内学术会议分会场主席、科学委员会委员以及国家自然科学基金、欧洲科学基金、波兰科学基金函评专家等。

主要从事心血管生物力学方面的研究工作,注重基础理论研究与临床医学和医疗仪器研发的紧密结合,研究课题涉及人体血液循环系统的理论建模与计算机仿真、医工交叉/融合研究以及心血管无创检测新技术研发与产品转化等。主持国家自然科学基金项目5项以及各类纵横向课题17项;已在国内外学术期刊上发表第一或通讯作者论文六十余篇,论文总被引3200 余次。2015-2018年入选了爱思唯尔“中国高被引学者”榜单,2017 获上海市力学学会优秀青年学者一等奖,2019 年获Mimics 创新奖亚太区二等奖,2023年获上海医学科技奖三等奖。

 

2019.12-至今 williamhill威廉希尔官网,教授

2012.8-2019.12 williamhill威廉希尔官网,特别研究员/副教授

2007.4-2012.8 日本理化学研究所次世代计算科学研究课题组,研究科学家

2004.4-2007.3 日本国立千叶大学自然科学研究科,工学博士


1)心血管生物力学建模与数值计算方法(基础理论研究)

2)心血管疾病的计算机辅助诊断与治疗(医工交叉/融合研究)

3)基于生物力学原理/人工智能的心血管检测技术研发与产品转化(产学医研结合研究)

 

★ 心血管系统几何多尺度建模

  针对解剖结构高度复杂的人体心血管系统,发展0-1D、0-3D、0-1-3D等多种几何多尺度建模方法,为心血管疾病诊断与治疗相关力学问题研究提供理论分析工具。

  图片1long.jpg

Coronaryvessel.gif



★ 基于多模态医学图像的计算机建模和血流动力学分析

  基于CT、核磁等医学图像构建血管的计算机模型,量化分析与血管疾病发生、发展、转归和预后有关的力学因素,辅助疾病的诊断、风险评估和预后评价。


图片2.jpg

2_1AortaMRI_压缩.gif2_2AortaCFD_压缩.gif动脉瘤应变_压缩.gif



★ 血管中的物质输运研究

开展血管中造影剂、低密度脂蛋白和药物颗粒等的输运研究,探讨大分子或颗粒物在血管系统中的输运、管壁沉积或跨壁渗透规律及其影响因素,为物质输运相关血管疾病的发病机制分析、靶向治疗策略制定等提供理论依据。


图片3.jpg

微球.gif


★ 体外模型流体力学实验

搭建包含生理脉动泵、PIV、压力传感器、压力导丝和超声流量计等的体外流体力学实验平台,采用3D打印、开模铸造等工艺制作血管或其他生物组织的实体模型开展实验,测量压力、流速和流量等信息,为计算机模型的验证提供实验依据。



图片4.jpg



★ 心脏的跨尺度力学建模

  构建涵盖心肌细胞电生理、心肌微组织力学和前/后负荷的跨尺度心脏模型,量化研究肥厚型心肌病、心衰等多种病理条件下的心肌细胞电力耦合行为、药物响应特性以及心肌力学/能量学指标等,为心肌病的诊断、治疗方案选择和预后评价提供理论参考。

图片5.jpg

5_d1健康心脏_压缩.gif



★ 机械循环支持相关的研究

发展循环支持装置与心血管系统的一体化建模方法,研究两者在多种生理病理条件下的血流动力学耦合效应,为循环支持策略选择、工况设定等提供理论依据;开发血泵的参数化建模、代理模型构建和结构优化方法,为血泵的创新设计和技术改良提供辅助工具。


图片6.jpg



★ 生物力学原理启发的心血管检测技术开发和样机研制

基于人体血液循环系统、软组织与医疗仪器的力学耦合机理和信号传导机制,发展新的动脉硬化、中心动脉血压和微循环功能无创测量方法与技术,与临床医生和产业界联合开展样机研制、测试和产品转化。

图片7.jpg



--------------------------------------------------------------------------------------------------------------------------------------------------

*本实验室着重培养多学科交叉的复合型人才,欢迎有力学、机械工程、数学或生物医学工程教育背景的学生报考博士、硕士研究生,同时欢迎本科生依托本实验室开展兴趣驱动的科技创新或学术探索工作。

*实验室常年招收有相关科研背景的博士后,将根据我校有关政策为优秀博士后提供有竞争力的薪资待遇和职业发展机会。

*实验室与企业、三甲医院共建生物力学联合实验室,为锻炼学生的产学医研多学科、多领域交叉融合能力提供良好的平台。


2023/03至今,International Journal for Numerical Methods in Biomedical Engineering 副主编

2022/09至今,Frontiers in Bioengineering and Biotechnology 副主编

2021/07至今,Journal of Clinical Ultrasound 副主编

2020/09至今,《Medicine in Novel Technology and Devices 编委

2020/05至今,《力学季刊》 编委

2018/08至今,《医用生物力学》 编委

2016/03至今,Journal of Hydrodynamics》、《水动力学研究与进展》编委

2020/05至今, 世界华人生物医学工程协会  青年委员、终身会员

2020/04至今, 上海市力学学会生物力学专委会 委员

2018/11至今, 中国生物材料学会材料生物力学分会 委员

2018/06至今, 莫斯科国立第一医科大学  客座研究员

2018/05至今, WilliamHill中文官方网站生物力学与医疗器械创新工作室责任教授

2017/09至今,  AO-SJTU生物力学联合实验室 负责人

主持国家自然科学基金项目5项(其中,面上3项,国际合作2项),国家重点研发计划项目课题1项,校企联合实验室项目1项,产业界委托技术研发/服务项目及各类纵向课题15项。

  第一或通讯作者论文:

[73] Tian, Y., Zhang, J., Zhao, H., Li, X., & Liang, F. (2025). Numerical study on low-density lipoprotein transport in intracranial aneurysms and its association with wall enhancement. Biomechanics and Modeling in Mechanobiology (accepted).

[72] Liu, T., Zhou, M., Qin, L., Tian, Y., & Liang, F. (2025). A computational model-based study on the mechano-energetic characteristics of the left ventricle with obstructive hypertrophic cardiomyopathy before and after septal myectomy. Biomechanics and Modeling in Mechanobiology (accepted).

[71] Li, D., Tian, Y., Weng, C., & Liang, F. (2025). Numerical Study on Hemodynamic Characteristics and Distribution of Oxygenated Flow Associated with Cannulation Strategies in Veno-Arterial Extracorporeal Membrane Oxygenation Support. CMES-Computer Modeling in Engineering and Sciences, 143(3), 2867-2882.

[70] Xia, Y., Wang, C., Wang, Y., Liang, F. (2025). A Computational ModelBased Study on TransStenotic Pressure Ratio of Carotid Artery Stenosis and Its Predictive Value for Cerebral Ischemia. International Journal for Numerical Methods in Biomedical Engineering, 41(5), e70044.

[69] Li, X., Zhang, Z., Simakov, S., Gamilov, T., Vassilevski, Y., Wang, Y., Liang, F. (2025). Influence of pressure guidewire on coronary hemodynamics and fractional flow reserve. Physics of Fluids, 37(3).

[68] Liu, T., Zhou, M., Liang, F. (2025). An Electromechanical Model-Based Study on the Dosage Effects of Ranolazine in Treating Failing HCM Cardiomyocyte. Cellular and Molecular Bioengineering, 1-26.

[67] Liu, T., Liang, F. (2025). A microstructure-based finite element model of the human left ventricle for simulating the trans-scale myocardial mechanical behaviors. Mechanics of Materials, 105273.

[66] Zhang, X., Li, Z., Zhang, Z., Wang, T., Liang, F. (2024). In silico data-based comparison of the accuracy and error source of various methods for noninvasively estimating central aortic blood pressure. Computer Methods and Programs in Biomedicine, 257, 108450.

[65] Li, D., Li, X., Xia, Y., Weng, C., Liang, F. (2024). Impact of peripheral venoarterial extracorporeal membrane oxygenation support for heart failure on systemic hemodynamics and aortic blood flow. Physics of Fluids, 36(10).

[64] Tian, Y., Li, X., Zhang, J., Zhao, B., Liang, F. (2024). Identifying hemodynamic factors associated with the rupture of anterior communicating artery aneurysms based on global modeling of blood flow in the cerebral artery network. Frontiers in Bioengineering and Biotechnology, 12, 1419519.

[63] Zhang, X., Wang, Y., Yin, Z., Liang, F. (2024). Optimization and validation of a suprasystolic brachial cuff-based method for noninvasively estimating central aortic blood pressure. International Journal for Numerical Methods in Biomedical Engineering, 40(3), e3806.

[62] Jin, L., Li, X., Zhang, M., Zhang, X., Xian, C., Liang, F., Li, Z. (2023). Arterial Stiffness and Cardiovascular Risk: The Role of Brachial Cuff-measured Index. Advanced Ultrasound in Diagnosis & Therapy (AUDT), 7(4).

[61] Tian, Y., Li, X., Zhao, B., Zhang, J., Liang, F. (2023). Influence of morphological characteristics on the deposition of low-density lipoprotein in intracranial bifurcation aneurysms. Physics of Fluids, 35, 081905.

[60] Liang, F., Qin, K., Wang, L. (2023). Recent advances in computational methods for cardiovascular and musculoskeletal biomechanics and biomedicine. International Journal for Numerical Methods in Biomedical Engineering, 39, e3774 (Editorial).

[59] Cui, W., Wang, T., Xu, Z., Liu, J., Simakov, S., Liang, F. (2023). A numerical study of the hemodynamic behavior and gas transport in cardiovascular systems with severe cardiac or cardiopulmonary failure supported by venoarterial extracorporeal membrane oxygenation. Frontiers in Bioengineering and Biotechnology, 11, 1177325.

[58] Li, X., Simakov, S., Liu, Y., Liu, T., Wang, Y., Liang, F. (2023). The Influence of Aortic Valve Disease on Coronary Hemodynamics: A Computational Model-Based Study. Bioengineering, 10(6), 709.

[57] Zhang, X., Jiang, Y., Liang, F., Lu, J. (2023). Threshold values of brachial cuff-measured arterial stiffness indices determined by comparisons with the brachial–ankle pulse wave velocity: A cross-sectional study in the Chinese Population. Frontiers in Cardiovascular Medicine, 10, 1131962.

[56] Liu, T., Li, X., Wang, Y., Zhou, M., Liang, F. (2023). Computational modeling of electromechanical coupling in human cardiomyocyte applied to study hypertrophic cardiomyopathy and its drug response. Computer Methods and Programs in Biomedicine, 231, 107372.

[55] Wu, Q., Vassilevski, Y., Simakov, S., Liang, F. (2022). Comparison of algorithms for estimating blood flow velocities in cerebral arteries based on the transport information of contrast agent: An in silico study. Computers in Biology and Medicine, 141, 105040.

[54] Wang, T., Liang, F., Song, G., Guan, J., Zhou, Z. (2022). Predicting the risk of postsplenectomy thrombosis in patients with portal hypertension using computational hemodynamics models: A proof-of-concept study. Clinical Biomechanics, 98, 105717.

[53] Fang, H., He, G., Cheng, Y., Liang, F., Zhu, Y. (2022). Advances in cerebral perfusion imaging techniques in acute ischemic stroke. Journal of Clinical Ultrasound, 50(8), 1202-1211.

[52] Xin, S., Chen, Y., Zhao, B., Liang, F. (2022). Combination of morphological and hemodynamic parameters for assessing the rupture risk of intracranial aneurysms: a retrospective study on mirror middle cerebral artery aneurysms, Journal of Biomechanical Engineering, 144(8), 081006.

[51] Hou, J., Li, X., Li, Z., Yin, L., Chen, X., Liang, F. (2022). An in vivo data-based computational study on sitting-induced hemodynamic changes in the external iliac artery. Journal of Biomechanical Engineering, 144(2), 021007.

[50] Wu, Q., Vassilevski, Y., Simakov, S., Liang, F. (2022). Comparison of algorithms for estimating blood flow velocities in cerebral arteries based on the transport information of contrast agent: An in silico study. Computers in Biology and Medicine, 141, 105040.

[49] Ge, X., Liu, Y., Tu, S., Simakov, S., Vassilevski, Y., Liang, F. (2021). Model-based analysis of the sensitivities and diagnostic implications of FFR and CFR under various pathological conditions. International Journal for Numerical Methods in Biomedical Engineering, 37(11), e3257.

[48] Wang, T., Zhou, Z., Liang, F. (2021). Influences of anatomorphological features of the Portal venous system on postsplenectomy hemodynamic characteristics in patients with portal hypertension: A computational model-based study. Frontiers in Physiology, 12, 661030.

[47] Xu, L., Zhu, Y., Zhang, R., Zhu, T., Wan, J., Liang, F., Zhao, B. (2021). Geometrical and hemodynamic characteristic changes of small anterior communicating artery aneurysms during follow-ups in a retrospective analysis. Neurology India, 69(5), 1338–1342.

[46] Ge, X., Simakov, S., Liu, Y., Liang, F. (2021). Impact of arrhythmia on myocardial perfusion: A computational model-based study. Mathematics, 9(17), 2128.

[45] 戴宇晨, 梁夫友 (2021). 脑前交通动脉瘤入流动脉管径比对瘤内血流动力学特征的影响. 水动力学研究与进展A, 36(2), 265-272.

[44] Zhou, X., Yin, L., Xu, L., Liang, F. (2020). Non-periodicity of blood flow and its influence on wall shear stress in the carotid artery bifurcation: An in vivo measurement-based computational study. Journal of Biomechanics, 101, 109617.

[43] Ge, X., Liu, Y., Yin, Z., Tu, S., Fan, Y., Vassilevski, Y., Simakov, S., Liang, F. (2020). Comparison of instantaneous wave-free ratio (iFR) and fractional flow reserve (FFR) with respect to their sensitivities to cardiovascular factors: A computational model-based study. Journal of Interventional Cardiology, 2020, 4094121.

[42] Wang, T., Liang, F., Li, L., Zhang, W., Wang, G., Wang, J., Zhang, C., Qi, X. (2020). A computational model-based study on the exchangeability of hepatic venous pressure gradients measured in multiple hepatic veins. Medical Engineering & Physics, 84, 28–35.

[41] Xu, L., Yang, T., Yin, L., Kong, Y., Vassilevski, Y., Liang, F. (2020). Numerical simulation of blood flow in aorta with dilation: a comparison between laminar and LES modeling methods. CMES-Computer Modeling in Engineering & Sciences, 124, 509-526.

[40] Xu, L., Yin, L., Liu, Y., Liang, F. (2020). A computational study on the influence of aortic valve disease on hemodynamics in dilated aorta. Mathematical Biosciences and Engineering, 17(1), 606-626.

[39] Zhang, Z., Xu, L., Liu, R., Liu, X., Zhao, B., Liang, F. (2020). Importance of incorporating systemic cerebroarterial hemodynamics into computational modeling of blood flow in intracranial aneurysm. Journal of Hydrodynamics, 32(3), 510-522.

[38] Gu, J., Zhuo, Y., Liu, T. J., Li, J., Yin, Z. F., Xu, Z. J., Fan, L., He, Q., Chen, K., Zeng, H. S., Wang, X. F., Fan, Y. Q., Zhang, J. F., Liang, F. Y., Wang, C. Q. (2020). Balloon Deflation Strategy during Primary Percutaneous Coronary Intervention in Acute ST-Segment Elevation Myocardial Infarction: A Randomized Controlled Clinical Trial and Numerical Simulation-Based Analysis. Cardiology Research and Practice, 2020, 4826073.

[37] 张絮洁, 苟中林, 王天琦, 梁夫友 (2020). 生物力学建模仿真在无创心血管检测技术与设备研发中的应用. 生物医学工程学杂志, 37(6), 990-999.

[36] 周鑫栋, 梁夫友 (2020). 低密度脂蛋白在颈动脉中输运与沉积的数值模拟及其影响因素. 医用生物力学, 35(5), 421-429.

[35] 覃开蓉, 梁夫友, 那景童 (2020). 动脉内皮血流动力学微环境建模分析和体外模拟方法与技术研究进展. 实验流体力学, 34(2), 11-24.

[34] 高然, 梁夫友 (2020). 冠状动脉搭桥术中血管外支架与静脉桥力学耦合的数值模拟研究. 生物医学工程学杂志, 37(6), 983-989.

[33] Li, X., Liu, X., Li, X., Xu, L., Chen, X., Liang, F. (2019). Tortuosity of the superficial femoral artery and its influence on blood flow patterns and risk of atherosclerosis. Biomechanics and Modeling in Mechanobiology, 18(4), 883-896.

[32] Xu, L., Zhao, B., Liu, X., Liang, F. (2019). Computational methods applied to analyze the hemodynamic effects of flow-diverter devices in the treatment of cerebral aneurysms: Current status and future directions. Medicine in Novel Technology and Devices, 3, 100018.

[31] 李杰, 殷兆芳, 梁夫友 (2019). 基于体外实验和数值仿真的冠脉介入手术中球囊去充盈瞬间的血流动力学研究. 医用生物力学, 34(5), 473-480.

[30] Ge, X., Yin, Z., Fan, Y., Vassilevski, Y., Liang, F. (2018). A multi-scale model of the coronary circulation applied to investigate transmural myocardial flow. International Journal for Numerical Methods in Biomedical Engineering, 34(10), e3123.

[29] Wang, T., Liang, F., Zhou, Z., Qi, X. (2018). Global sensitivity analysis of hepatic venous pressure gradient (HVPG) measurement with a stochastic computational model of the hepatic circulation. Computers in Biology and Medicine, 97, 124–136.

[28] Liang, F., Guan, D., Alastruey, J. (2018). Determinant factors for arterial hemodynamics in hypertension: Theoretical insights from a computational model-based study. Journal of Biomechanical Engineering, 140(3), 031006.

[27] Xu, L., Liang, F., Zhao, B., Wan, J., Liu, H. (2018). Influence of aging-induced flow waveform variation on hemodynamics in aneurysms present at the internal carotid artery: a computational model-based study. Computers in Biology and Medicine, 101, 51-60.

[26] Xu, L., Liang, F., Gu, L., Liu, H. (2018). Flow instability detected in ruptured versus unruptured cerebral aneurysms at the internal carotid artery. Journal of Biomechanics, 72, 187-199.

[25] 张絮洁, 章亚平, 殷兆芳, 覃开蓉, 梁夫友 (2018). 基于上臂袖带振荡波估测动脉僵硬度的理论方法及临床实验. 中国医疗设备, 33(4), 22-28.

[24] Wang, T., Liang, F., Zhou, Z., Shi, L. (2017). A computational model of the hepatic circulation applied to analyze the sensitivity of hepatic venous pressure gradient (HVPG) in liver cirrhosis. Journal of Biomechanics, 65, 23-31.

[23] Liang, F., Liu, X., Yamaguchi, R., Liu, H. (2016). Sensitivity of flow patterns in aneurysms on the anterior communicating artery to anatomic variations of the cerebral arterial network. Journal of Biomechanics, 49(15), 3731-3740.

[22] Guan, D., Liang, F., Gremaud, P. A. (2016). Comparison of the Windkessel model and structured-tree model applied to prescribe outflow boundary conditions for a one-dimensional arterial tree model. Journal of Biomechanics, 49(9), 1583-1592.

[21] Deng, Z., Liang, F. (2016). Numerical analysis of stress distribution in the upper arm tissues under an inflatable cuff: Implications for noninvasive blood pressure measurement. Acta Mechanica Sinica, 32(5), 959-969.

[20] 李逸, 殷兆芳, 梁夫友 (2016). 基于临床数据与循环系统模型融合技术的心血管功能评估中的误差分析. 中国生物医学工程学报, 35(1), 47-54.

[19] Liang, F., Oshima, M., Huang, H., Liu, H., Takagi, S. (2015). Numerical study of cerebroarterial hemodynamic changes following carotid artery operation: a comparison between multiscale modeling and stand-alone three-dimensional modeling. Journal of Biomechanical Engineering, 137(10), 101011.

[18] Liang, F., Yin, Z., Fan, Y., Chen, K., Wang, C. (2015). In vivo validation of an oscillometric method for estimating central aortic pressure. International Journal of Cardiology, 199, 439-441.

[17] 韩旭, 刘晓晟, 梁夫友 (2015). 出口边界条件对脑前交通动脉瘤内血流特征的影响. 水动力学研究与进展A, 30(6), 692-700.

[16] Liang, F., Senzaki, H., Kurishima, C., Sughimoto, K., Inuzuka, R., Liu, H. (2014). Hemodynamic performance of the Fontan circulation compared with a normal biventricular circulation: a computational model study. American Journal of Physiology- Heart and Circulatory Physiology, 307(7), H1056–H1072.

[15] Liang, F., Sughimoto, K., Matsuo, K., Liu, H., Takagi, S. (2014). Patient-specific assessment of cardiovascular function by combination of clinical data and computational model with applications to patients undergoing Fontan operation. International Journal for Numerical Methods in Biomedical Engineering, 30(10), 1000-1018.

[14] Liang, F. (2014). Numerical validation of a suprasystolic brachial cuff-based method for estimating aortic pressure. Bio-medical materials and engineering, 24(1), 1053-1062.

[13] Deng, Z., Zhang, C., Yu, P., Shao, J., Liang, F. (2014). Estimation of left ventricular stroke volume based on pressure waves measured at the wrist: a method aimed at home-based use. Bio-Medical Materials and Engineering, 24(6), 2909-2918.

[12] Liang, F., Senzaki, H., Yin, Z., Fan, Y., Sughimoto, K., Liu, H. (2013). Transient hemodynamic changes upon changing a BCPA into a TCPC in staged Fontan operation: a computational model study. The Scientific World Journal, 2013, 486815.

[11] Sughimoto, K., Liang, F., Takahara, Y., Mogi, K., Yamazaki, K., Takagi, S., Liu, H. (2013). Assessment of cardiovascular function by combining clinical data with a computational model of the cardiovascular system. Journal of Thoracic and Cardiovascular Surgery, 145(5), 1367-1372.

[10] Liang, F., Takagi, S., Himeno, R., Liu, H. (2013). A computational model of the cardiovascular system coupled with an upper-arm oscillometric cuff and its application to studying the suprasystolic cuff oscillation wave, concerning its value in assessing arterial stiffness. Computer Methods in Biomechanics and Biomedical Engineering, 16(2), 141-157.

[9] Liang, F., Takagi, S., Liu, H. (2012). The influences of cardiovascular properties on suprasystolic brachial cuff wave studied by a simple arterial-tree model. Journal of Mechanics in Medicine and Biology, 12(3), 1-25.

[8] Liang, F., Liu, H., Takagi, S. (2012). The effects of brachial arterial stiffening on the accuracy of oscillometric blood pressure measurement: A computational model study. Journal of Biomechanical Science and Engineering, 7(1), 15-30.

[7] Liang, F., Fukasaku, K., Liu, H., & Takagi, S. (2011). A computational model study of the influence of the anatomy of the circle of willis on cerebral hyperperfusion following carotid artery surgery. Biomedical Engineering Online, 10, 84.

[6] Liang, F., Takagi, S., Himeno, R., Liu, H. (2009). Biomechanical characterization of ventricular-arterial coupling during aging: a multi-scale model study. Journal of Biomechanics, 42(6), 692–704.

[5] Liang, F., Takagi, S., Himeno, R., Liu, H. (2009). Multi-scale modeling of the human cardiovascular system with applications to aortic valvular and arterial stenoses. Medical & Biological Engineering & Computing, 47(7), 743–755.

[4] Liang, F., Taniguchi, H., Liu, H (2007). A multi-scale computational method applied to the quantitative evaluation of the left ventricular function. Computers in Biology and Medicine, 37(5): 700-715.

[3] Liang F., Yamaguchi, R., Liu H. (2006). Fluid dynamics in normal and stenosed human renal arteries: An experimental and computational study. Journal of Biomechanical Science and Engineering, 1, 171-182.

[2] Liang, F., Liu, H. (2006). Simulation of hemodynamic responses to the Valsalva maneuver: An integrative computational model of the cardiovascular system and the autonomic nervous system. Journal of Physiological Sciences, 56(1), 45-65.

[1] Liang, F., Liu, H. (2005). A closed-loop lumped parameter computational model for human cardiovascular system. JSME International Journal (C), 48(4), 484-493.

授课:

1)《工程学导论》面向本科生(春季、秋季学期)

2)《工程力学实验》面向本科生(春季、秋季学期)

3)《力学改变生活》(人体生物力学)面向本科生

 

本科生科研指导:

指导37人次,完成李政道䇹政基金项目4项,毕业论文14篇,力学创新实验6项,PRP项目4项,大学生创新计划项目5项。

 

博士后/研究生培养:

博士后5名(在站1名,出站4名)

博士生8名(在读5名,毕业3名)

硕士生11名(毕业或转博10名,在读1名)

[1] 梁夫友, 张絮洁. 融合袖带振荡波波形特征估测中心动脉血压的系统及方法, 中国发明专利,2022(实审中)

[2]梁夫友, 张絮洁. 一种末梢血管血流调节功能的无创检测系统, 中国发明专利, ZL201710346227.5, 2020.

[3] 梁夫友, 吕品, 张纯刚, 于平. 一种基于脉波分析法计算心脏每搏血量的检测方法, 中国发明专利, ZL201410369862.1, 2019.

[4] Saito, Y., Himeno, R., Takagi, S., Liang, F. Vascular viscoelasticity evaluation device, vascular viscoelasticity evaluation method, and program, 美国专利, US201414780259A, 2019.

[5] Saito, Y., Himeno, R., Takagi, S., Liang, F. Vascular viscoelasticity evaluation device, vascular viscoelasticity evaluation method, and program, 欧洲专利, EP14774331A, 2016.

[6] 斋藤之良,姬野龙太郎,高木周,梁夫友. 血管粘弹性评价装置、血管粘弹性评价方法以及程序. 中国发明专利,2017(专利号:ZL201480018409.4

[7] 梁夫友, 李逸, 李力军. 基于振荡式血压计信号的中心动脉压检测系统, 中国发明专利, ZL201310450330.6, 2015.

(1)    2023上海医学科技奖 三等奖(排名5

(2)    2020 全国高等学校力学类专业本科生毕业设计(论文)A类优秀论文奖(指导教师)

(3)    2019  Mimics Innovation Award Second Prize (Asia-Pacific)

(4)    2019 WilliamHill中文官方网站“钱学森杯”大学生课外学术科技作品竞赛 二等奖(指导教师)

(5)    2018 “知行杯”上海市大学生社会实践项目大赛 三等奖(指导教师)

(6)    2018 WilliamHill中文官方网站学生暑期社会实践 一等奖 (指导教师)

(7)    2018 WilliamHill中文官方网站教书育人奖 集体二等奖(团队成员)

(8)    2017 上海市力学学会优秀青年学者 一等奖

(9)    2015-2018连续四年入选“中国高被引学者”榜单

(10) 2015-2021指导的研究生7人次在全国生物力学大会上获得优秀论文奖

版权所有 © 2025 英国·威廉希尔(WilliamHill)中文官方网站 沪交ICP备05053   流量统计